A Coding Example of Computing Link Relative Ratio and Year-on-year Basis

Link relative ratio refers to comparison between the current data and data of the previous period. The interval is usually one month. For example, divide sales amount of April by that of March, and you get the link relative ratio of April. Hour, day, week and quarter can also be used as the time interval. Year-on-year comparison is the comparison between the current data and data of the corresponding period of the previous year. For example, divide sales amount of April 2014 by that of April 2013. In business, data of multiple periods is usually computed to find the variation trend. 

Seeking link relative ratio and year-on-year comparison is common inter-row and inter-group computations, which are easy to be performed with esProc. The following example is used to illustrate the computations. 

Case description:

To compute the link relative ratio and year-on-year comparison of each months sales amount within the designated period. The data comes from table order. Some of the data is shown below:

esProc code:

A1=esProc.query("select * from sales3 where OrderDate>=? and OrderDate<=?",begin,end)

A2=A1.groups(year(OrderDate):y,month(OrderDate):m;sum(Amount):mAmount)

A3=A2.derive(mAmount/mAmount[-1]:lrr)

A4=A3.sort(m)

A5=A4.derive(if(m==m[-1],mAmount/mAmount[-1],null):yoy)

Code interpretation:

A1: Query in the database according to periods. begin and end are external parameters. Such as, begin="2011-01-01 00:00:00"end="2014-07-08 00:00:00"(i.e. the date of today which can be obtained through now() function). Some of the query results are as follows: 

A2: Group orders by year and month, then summarize and seek each months sales amount. Some of the computed results are as follows: 

A3: Add a new field Irr, i.e, the link relative ratio on a month-on-month basis. The code is mAmount/mAmount[-1], in which mAmount represents sales amount of the current month, and mAmount[-1] represents that of the previous month. Note that the initial months link relative ratio is empty (i.e. January 2011). Computed results are: 

A4: Sort A3 by month and year to compute year-on-year comparison. Complete code should be: =A3.sort(m,y). Since A3 is originally sorted by the year, so we just need to sort by the month, the code is: A3.sort(m), which has a higher performance. Some of the computed results are:  

A5: Add a new field yoy, i.e., theyear-on-year comparison of monthly sales amount. The code is: if(m==m[-1],mAmount/mAmount[-1],null), meaning that the computation of year-on-year comparison is only performed over the corresponding months. Note that the year-on-year comparison for months of the initial year (i.e. the year 2011) is always. Some of the computed results are:  

A row of code, A6=A5.sort(y:-1,m), can be added to make observation easier. That is, sort A5 in descending year order and ascending month order. Note that the data comes to an end in July 2014. Results are shown below: 

Views: 595

Comment by Jim King on July 30, 2014 at 8:39pm

Compare the sales amount with the previous month, compare with the corresponding period of last year...in business analytics, such data comparison is quite necessary to find the business trends,how do you calculate them? And what do you think of the method illustrated above?

Comment

You need to be a member of Oracle Community to add comments!

Join Oracle Community

Oracle Community On

I'm not a fan of advertising, and so I will not be including any advertisements on OracleCommunity.net. However, managing this community does not come without cost! If you are willing to donate to help pay for the monthly community fees and domain services I accept Bitcoin and PayPal donations.

Donate Bitcoins

Badge

Loading…

Blog Posts

Streamline Your Business Process with Data Entry Services

Companies growing continuously have to deal with large volumes of data on a regular basis. It becomes really difficult for these business organizations to manage this data. It eats up a lot of time and diverts the attention of the top level management from core-business tasks. In such cases, outsourcing proves out to be a better option. By outsourcing repetitive data entry tasks to professionals, companies cut costs, increase their revenue and improve the productivity of business. They can…

Continue

Posted by Alvaro Dee on March 1, 2017 at 1:57am

Do What You Do Best and Outsource the Rest

One of the most valuable assets of an organization, data lies at the heart of business. It impacts everything from customer service to email deliverability and ultimately revenue generation. If the data that you have is not accurate, it will have a direct impact on your company’s ability to meet…

Continue

Posted by Alvaro Dee on February 7, 2017 at 2:07am

Draw Actionable Insights and Make Better Decisions with Data Mining Services

Data Mining is the process of analyzing and extracting crucial information from a database and presenting the same in an appropriate way to help business cut cost and boost revenue. In simple words it is the process of drawing crucial and actionable insights, which is imperative for better decision making.

Data mining is crucial for effective management of your business. It is also used for verifying whether or not the strategies are going as planned so as to provide desired results.…

Continue

Posted by Alvaro Dee on February 1, 2017 at 4:02am

Attain Data Accuracy, Competitive Pricing, and Quick Turnaround Time by Outsourcing Data Entry Services

In order to focus on crucial business activities, organizations worldwide prefer outsourcing data entry services to reliable service providers. Though redundant but highly crucial, data entry still remains an important component of document management and requires vigorous quality checks. Outsourcing data entry tasks to experts ensures affordable and quality output while saving time and resources that can be…

Continue

Posted by Alvaro Dee on January 31, 2017 at 4:49am

© 2017   Created by Steve Karam.   Powered by

Badges  |  Report an Issue  |  Terms of Service